If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+24x-2=0
a = 9; b = 24; c = -2;
Δ = b2-4ac
Δ = 242-4·9·(-2)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-18\sqrt{2}}{2*9}=\frac{-24-18\sqrt{2}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+18\sqrt{2}}{2*9}=\frac{-24+18\sqrt{2}}{18} $
| 4x=8^2x=1 | | 12x6= | | x7+4=18 | | 12x6=6 | | 1.12a=11 | | z–6=1 | | X-0.5x=9 | | -8z-2=-7z+8 | | 5+2x-7x=35 | | 3g-8g+4=-5G+ | | 1.4a=16 | | 7+d=1 | | 3x-80=2x-30 | | 6n-4=1+4+7n | | (X+2)/3=(4x+2)/4 | | a/14+-10=5 | | −2x≤6=0 | | 10^x=400 | | n/5-7=-15 | | u/8=0 | | 9n+3=10n-4 | | 3+3p=10+4 | | (71-3x)=(14x+3) | | 2(3x-5)=-52 | | (2x+3)+(5x)=135 | | 7-7f=-8-9f+1 | | 3g-8g+4=g | | (71=3x)=(14x+3) | | 1.3r=15 | | 71=3x=14x+3 | | 1.666m+2=2.1666 | | 3x+2=x-6(x+5) |